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GENERATION OF W -TYPE STATES IN THREE KERR -LIKE 

NONLINEAR OSCILLATORS SYSTEM  

Nguyen Thi Dung1, Phan Thi Dan2 , Nguyen Van Nghia3 
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Abstract:  In this article, we examine a model comprising three Kerr-like nonlinear 

oscillators with two boundaries that are pumped by external coherent fields and coupled 

to the center one. We demonstrate that by applying evolution operator formalism, our 

quantum system can be simulated and behave as a nonlinear quantum scissors, 

its ñtruncationò Hilbert space is more efficient. It will be confirmed that the model can 

produce bipartite and tripartite entanglement, especially W-type entangled states which is 

a remarkably simple quantum information problem. 

Keywords: Entanglement, W state qubit, qutrit, negativity, quantum scissors. 

1. Introduction 

The journey of Quantum Mechanics began with Planck's proposal of energy 

quantization and the law of radiation to explain the so-called ñultraviolet catastropheò in 

the spectrum of matter. This idea was enhanced one step by Einstein when he did research 

on the photoelectric effect. With the time, Quantum mechanics has been improved, helping 

us to understand the framework of physics and its principle, it has also become a basis for 

advancement of many new branches of physics such as quantum information, teleportation, 

computation and many other fields. The essential features for such advances are known as 

quantum correlations and they can be affirmed to transmit, preserve and manipulate 

information. These led to a considerable development of particular interest in research of 

quantum correlations in numerous types of quantum systems. The purpose of this article is 

to investigate how to generate time evolution of quantum correlations in terms of the 

distinctive form - entanglement. Specifically, the system consists of three nonlinear Kerr-

type oscillators, two boundaries are mutually coupled to center one by continuous linear 

interaction and excited by the external coherent fields. These oscillators can be expressed 

by effective Hamiltonians which are alike to those described optical Kerr systems. 

Quantum Kerr-type nonlinearity systems are commonly discussed in various physical 

applications. Such models can be put into practice in description of nanomechanical 

resonators and many optomechanical systems with Bose-Einstein condensate [14]. In 

addition, Kerr-type oscillatory models were the subject of a large number of papers related 
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to the quantum chaos problems [7], [15]. The modes of Kerr-type nonlinear coupler have 

been proven to be auspicious devices, simple treatment for finding numerical solutions and 

producing entangled states and hence its quantumness.  

2. The model description and discussions 

The considered system comprises three nonlinear Kerr-type oscillators, they are 

mutually coupled to each other by linear interaction and excited by external excitation 

fields in two boundaries, each oscillator corresponds to a single mode of the field labeled 

a, b and c. It is not only the self- coupling term that exists in this system, instead of the so-

called cross-Kerr coupling involving [9] which is different from many systems in previous 

literature [6], [7]. The total Hamiltonian describing the dynamics of our system can be 

defined as (assume that 1= ). 

int
Ĕ Ĕ Ĕ Ĕ,nl extH H H H= + +  (1) 

where 

À2 2 À2 2 À2 2 À À À À À ÀĔ Ĕ Ĕ Ĕ Ĕ ĔĔ Ĕ Ĕ Ĕ Ĕ Ĕ Ĕ Ĕ Ĕ Ĕ ĔĔ Ĕ,
2 2 2

a b c
nl ab bc acH a a b b c c a ab b b bc c a ac c
c c c

c c c= + + + + +  
(2) 

defines Kerr-like media (including cross-Kerr coupling); and 

À * À À * À

int
Ĕ Ĕ Ĕ ĔĔ Ĕ Ĕ Ĕ Ĕ,ab ab bc bcH a b ab b c bce e e e= + + +  (3) 

corresponds to the nonlinear interaction between coupled modes a-b and b-c; 
À * À *Ĕ Ĕ Ĕ Ĕ Ĕ

extH a a c ca a g g= + + + (4) 

relates to interaction with external fields. 

Here , ,
a b c
c c c are proportional to the third-order susceptibilities; , ,ab bc acc c c

describe the cross - Kerr coupling processes between a - b, and b ï c; whereas abe  and bce

mean the strength of the nonlinear interactions between modes a - b, and b - c. Hamiltonian 

of our system can be stated in terms of bosonic annihilation and creation operators, we are 

able to present annihilation operators as square matrices in the Hilbert space 

a b c
H H H H as follows: 

Ĕ ĔĔ,
r r

a I I a  (5) 

ĔĔ Ĕ,
p p

b I b I  (6) 

Ĕ ĔĔ ,
q q

c c I I  (7) 

for the mode a, b and c, respectively. The operators ( )Ĕ , ,iI i r p q=  is in the form of an 

identity matrix with r, p, q dimensions for mode a, b and c. 

If the dissipation processes are ignored, time-evolution of the tripartite quantum system 

can be expressed by wave-functions and written in the form of number photon states as: 

()
, , 0

rpq a b c
r p q

t c r p qy
¤

=

=ä  
(8) 
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         where the complex probability amplitudes 
rpqc  corresponds to the r-, p- and q- photon 

Fock states in mode a, b and c, correspondingly.  

The evolution of our system can be regulated by a unitary operator defined from total 

Hamiltonian as [9] 

( )Ĕ Ĕexp .U iHt= -          (9) 

Supposing that all interactions here are weak compared to nonlinearity constants, we 

can explain that the transition of the state can behave as a resonant case [14], [15]. The 

systemôs evolution is confined to the limited resonant transition states corresponding to 

{ } { }, , 0,1 ,p q r =  whereas the others can be neglected. Applying the operator ĔU on the 

initial state, our generated wave function can be obtained  as: 

() ()
, , 0

Ĕ 0 .rpq

r p q

t c r p q Uy y
¤

=

= =ä  
(10) 

In this work, we define the dimension of each subspace as equal to ten and assume that 

1
a b c
c c c c= == = are proportional to the third-order susceptibilities, 

1ab bc acc c c c= = = =, and ab bce e e= = are real number.  

  

Figure 1. a) Time evolution of probabilities of the resonant states 

0 0 0 , 0 0 1 ,
a b c a b c

0 1 0 ,
a b c

 and 1 0 0
a b c

. b) Deviation from the unity of 

the sum of probabilities. The parameters are1c= , 1c= , 
310 ,a g -= = 30,8.10e -= . 

As it can be seen from Fig.1a, the time evolution of probabilities of resonant states, 

when cross-coupling terms are taken into account. Due to effect of crossing coupling terms, 

the transition of the states evolved into only four states. They are 

0 0 0 , 0 0 1 ,
a b c a b c

0 1 0 ,
a b c

 and 1 0 0
a b c

, which are totally different from 

the model discussed in [6] with eight states involved in the transition.  Fig.1b displays the 

deviation of the sum of the probabilities, the maximum deviation is 
6~10 .-  Thus, once 

again this confirms that the evolution of wave function is closed within four states with a 
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high accuracy. Therefore, it can be seen that when the interacting constants are sufficiently 

smaller than nonlinearity coefficients, this system can be referred to as nonlinear quantum 

scissors. From the standpoint of quantum information theory, one can say that the discussed 

system can be considered as a three-qubit one, due to the fact that only two states (vacuum 

and one-photon state) for each of the modes are involved in the systemôs evolution. Thus, 

the wavefunction now can be written tin truncation form as: 

() () () () ()000 001 010 1000 0 0 0 0 1 0 1 0 1 0 0
a b c a b c a b c a b ccut

t c t c t c t c ty = + + +  

It is proposed that a three mode nonlinear oscillator model may generate bipartite 

and tripartite entangled states via optical state truncation. As measurement of bipartite 

entanglement, we apply the bipartite negativity which was introduced by Vidal and Werner 

[3], and generalized to the higher dimensions by S. Lee [13]. This quantity is an 

entanglement monotone and it is easy to calculate. This concept is derived from Peresï

Horodecki (PPT) criterion [11], and the negativity measures negative eigenvalues of a 

density matrix after performing the partial transposition.  If 
ijr is density matrix of 2-mode 

system, the negativity can be obtained by the following: 

( ) 1
1

2

iT

ij

ijN
r

r
-

=  

(11) 

here  ( )Trij k ijkr r= ; ( )ijN r  are known as the bipartite negativity extracting from three mode 

matrix where the partial transpose is made for the subsystem i . For pure states, the negativity 

is equal to the concurrence, meanwhile this quantity gives greater values than entropy [10]. 

In order to distinguish among many types of tripartite entangled state which may be 

produced in our system, we use a Sabinôs classification [2] to calculate full negativity: 

( )
1/3

,
abc a bc b ac c abN N N Nr - - -=  (12) 

where 
i jkN-

 (i, j, k=a, b, c) (different from (11)) can be calculated when we see ij  as 

a subsystem which is equivalent to subsystem i. 

To classify tripartite entanglement, Sabin and Garcia [2] have proposed in their 

report an entanglement catalog for both mix and pure states in six subtypes from fully 

separable state to maximal one. Type 0-0 for fully separability, type 1-1 for biseparable 

states, and type 2 is for fully entanglement states.  For our system we are interested in type 

2 with 4 subtypes as in the table below.   

Table 1. The catalog for tripartite entanglement 

reduced entanglement type of tripartite entanglement tripartite entangled states 

Nij=Njk=Nik=0 2- 0 GHZ-type states 

NijÍ0; Njk=Nik=0 2- 1  

NijÍ0; NjkÍ0; Nik=0 2- 2 star shaped-type state 

NijÍ0; NjkÍ0; NikÍ0 2- 3 W -type class 
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Figure 2.  Time evolution of reduced negativity  and tripartite negativity  for  a) 
31,5.10e -=  

b) 
30,5.10e -=  and 1c= , 1c= , 

310 .a g -= =  

Fig.2a and 2b show the negativity of bipartite and tripartite system with two different 

values of interaction strength. From these two figures, we can see that bipartite quantum 

entanglement is generated not only for the pair a-b, b-c (dashed-line) but also for the pair 

a-c (doted -line) for both values of interaction strength e. Thus, the boundary oscillators 

can generate a bipartite entanglement state through interacting with the central one and 

depends directly on e. Thus, by choosing the value of the magnitude of the linear interaction, 

we can influence the degree of the neighboring bipartite, tripartite - entanglement and time of 

appearance of the entanglement.  

Following the time evolution, it is recognized that the maxima value of tripartite 

negativity is nearly unity corresponding to the smaller value of interaction (Fig.2b), this 

means the maximally tripartite entangled state is nearly created. For other time evolution, 

inseparable state is produced with smaller probabilities and associated with the W-like 

basic state (Fig.3) which may be expressed as [16]. 

1

2

1
0 0 1 0 1 0 1 0 0 ,

3

1
0 0 1 0 1 0 1 0 0 .

3

a b c a b c a b c

a b c a b c a b c

W

W

 

(13) 

When we compare these results with the ones presented in [16] for the system 

without crossing coupling term, in which the authors stated that the possibility of producing 

entangled W-states, the dynamics in our system is richer and the model can produce other 

types of 3-qubit entangled states with high probabilities. Though the W-type state is not a 

maximal entangled state, this class was confirmed having the highest robustness against 

the loss of one qubit [14]. The present system can be a source of generation of tripartite 

entangled states in the form W state, which is a remarkably simple quantum information 

problem to apply to quantum teleportation and quantum secure communication and so on. 
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Figure 3. Time evolution of fidelity corresponding to W-type states  for 
30,5.10e -=  and 

1c= , 1c= , 
310 .a g -= =  

3. Conclusion  

In this work, we have studied the model of a chain of three nonlinear Kerr-type 

oscillators, with two boundaries that are coupled to the center oscillator by linear 

interaction and excited by external excitation fields. The system can behave as perfect 

three-mode nonlinear quantum scissors and can be treated as a 3-qubit system. Both bi- 

and tripartite entanglement have been discussed. In the case of the 2-qubit entanglement, 

we can detect not only entanglement between the pairs of oscillators, but also the 

entanglement can be generated between two oscillators even though they are not directly 

coupled together.  For the case of 3-qubit entanglement, it is possible to obtain W-type 

class. Thus, the effective Hamiltonian describing our model is not only a potential source 

of various bi- and tri-partite entangled states, but also stimulating for the discovery of 

numerous types of quantum correlations as well as relations among them. 

Acknowledgement: This research was supported by Hong Duc University under grant 

number ņT-2020-18. 
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Abstract:  This article deals with final consonant clusters errors made by the second-year 

English-majored students in the Faculty of Foreign Languages, Hong Duc University 

(HDU). Data were generated through a mid-term oral test with the participation of 30 

second-year students. The two data collection instruments are used to record studentsô talk 

to find out common errors with final clusters that students actually make and then observe 

their reading out loud the single words to seek out suitable strategies to overcome those 

errors. The findings of the study indicate that the majority of the second year students tend 

to omit one or two elements of the final clusters and some of the students make certain 

minor substitution and insertion errors. Some useful strategies are also suggested for this 

typical group of second-year students at HDU to deal with their pronunciation errors.  

Keywords: Consonants, final clusters, English major, errors. 

1. Introduction 

English has become an important demand for educational and job opportunities; 

however, many Vietnamese speakers do not have intelligible English pronunciation so 

as to be easily understood in direct communication with foreigners. Learners with 

serious pronunciation errors will often fail in communication. Therefore, it is very 

essential to research learnersô pronunciation errors, and then to develop suitable 

strategies to improve articulation. 

Among many pronunciation errors that learners of English as a second language are 

likely to make (i.e. intonation, stress, ending sounds, etc.), errors with final consonant 

clusters can be considered serious because ñlearnersô inability to produce final consonant 

clusters can lead to incomprehensibilityò [2, p.55]. Along the same line, Celce-Murcia, 

Brinton & Goodwin [3] supported that inaccurate pronunciation of consonant clusters can 

make English language learnersô speech difficult for native speakers to understand, 

particularly in cases where the learners use epenthesis to break up clusters or omit a 

consonant in a cluster [1].  

Serious as it might be, problems with final clusters can be considered as one 

typical pronunciation error of Vietnamese learners. In an article about common 

challenges faced by Vietnamese learners, Deshayes [5] firmly stated that ñEnglish 
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consonant clusters give Vietnamese learners problems not only because they do not 

have these consonant combinations in their own language, but also because they 

produce a variety of syllable typesò. 

Being an English teacher at Hong Duc University (HDU), I realize that many of my 

students encounter difficulties in pronouncing English final clusters though they are able 

to produce single consonants accurately. For the above reasons, I have conducted this 

research entitled ñStrategies to correct errors in pronouncing final consonant clusters by 

second-year English major students at HDUò.  

2. Some main theoretical terms 

2.1. Consonant sounds 

According to Peter Roach [11], consonants are ñsounds in which there is obstruction 

to the flow of air as it passes from the larynx to the lipsò. Specifically, consonant sounds 

are the sounds in the production of which two articulators come close together so that air 

stream is obstructed and cannot get out freely. 

Consonants can be described in terms of the manner of articulation, the place of 

articulation and voicing. Kelly [8] and Roach [11] categorized the 24 consonants into 

6 groups: 

Plosive Nasal 

Fricative Lateral 

Affricative Approximant 

2.2. English final consonants and consonant clusters 

Any consonant except h, r, w and j may be a final consonant. When there are two or 

more consonants at the end of the word (called final cluster), the terms ñpre-finalò and 

ñpost-finalò consonants are used. These clusters will be investigated in my study.  

Pre- final includes: /m, n, Ǽ, l, s/ 

Post-final includes: /s, z, t, d, ɗ/ 

Two consonant clusters:  

Pre-final followed by a final consonant 

Consonant plus post-final: 

E.g.: think, important, help, health , cats, etc. 

Three consonant clusters:  

Pre-final plus final plus post-final (e.g. helped, twelfth , banks, etc.) 

Final plus post-final plus post-final (e.g. text, fifths, lapsed, etc.) 

Four consonant clusters: 

Most are pre-final plus final plus post-final plus post-final. 

E.g: prompts, twelfths. 

Occasionally, there is one final and three post-final consonants. 

E.g: sixths, texts. 
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2.3. Final consonant clusters errors 

According to previous studies, the errors with consonant sounds can be classified 

into 6 types:  

1. Cluster reduction. This is the ñdeletion of one or more consonants from a target 

cluster so that only a single consonant occurs at syllable marginsò [5; 217]. 

2. Cluster simplification. The error occurs when one/some elements of a cluster being 

is/ are produced in a different manner from the target phoneme [5].  

E.g. green - pronounced as [gwin]; bread - pronounced as [bwed] 

3. Epenthesis. This is the insertion of some vowel (normally a schwa) between 

cluster elements [6] [12]. 

E.g. drive /draiv/ pronounced as [dᴅraiv] 

4. Coalescence. It occurs when the yielded pronunciation contains a new consonant 

composed of features from the original consonants.  

E.g. Swim-pronounced as [fim]. It was explained that because the [+fricative] feature 

of /s/ cooccurs with the [+labial] feature of /w/, resulting in a labial fricative, [f] [6] [12]. 

5. Omitting nasal and liquid sounds. In consonant clusters consisting of pre-final + 

final consonants with nasals (/n/, /m/) or liquids (/r/, /l/) as the first element, (/m, n, l, r/ + 

final consonant), nasals and liquids sounds are often omitted [10]. 

E.g. went Ąwet belt  Ą bet 

6. Phonetically possible spelling. In representing the first consonant of a cluster, 

spellers tend to spell words in an inaccurate but phonetically plausible ways [14]. 

E.g. trap Ą chap. It was explained that because ñchò closely resembles the sound of 

the initial blend ñtrò. Treiman (1985) explains that this ñchò spelling reflects the release of 

/t/ in the context [4] [10]. 

3. The study 

3.1. Subjects of the study 

Participants in the research are 30 second-year students, who were chosen randomly 

from the 3 second-year classes of the Faculty of Foreign Languages, HDU. All of them had 

completed the Pronunciation course offered to first-year students at HDU. Hence, they had 

got not only basic ideas of pronunciation rules but also a certain awareness of their own 

pronunciation problems which might have been corrected by teachers.   

At the time of the research, these English major subjects, aged from 19 to 21 years 

old, had worked with the textbook ñAchievers B2ò by Martin Hobs [10] for speaking skills. 

The total time allotted to speaking skills for the third term at HDU English majors is 63 

class hours. The mid-term oral test occurs in week 8 or week 9 in each class with the same 

speaking topics.  
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3.2. Data collection procedure 

Data collection was divided into two steps as follows: 

Stage 1 (Recording): The data collection was administered through an oral test. This 

is the mid-term oral test that students had to participate in to get the mid-term marks which 

make up 20% of the total score in the semester. During the test, each of the students was 

requested to answer the questions on different topics in about eight to ten minutes. 

Everything they presented was recorded with the aid of an mp3 recorder which was placed 

on the table in the test room to get the best audio quality, and was later used for analysis to 

describe and categorize their errors with final clusters.  

Stage 2 (Observation): All words with mispronounced final clusters collected from 

the recordings were then used for the participants to read out loud. The aim of the stage is 

to answer the question whether or not the students have the same problems in the test and 

in their real speech. From this, it is expected to suggest relevant and suitable strategies to 

correct the errors. Therefore, the speaker himself/ herself would read out loud the errors 

that he/ she made, paying attention to the final clusters when pronouncing the words. When 

they read, the researcher took note of any mispronounced final clusters in a checklist.  

3.3. Data analysis procedure 

The data analysis procedure included two phases:  

Phase 1: All information collected from the subjects during the oral test was used 

for analysis. All the errors made by students were counted in terms of types, frequency and 

seriousness. The researcher then classified those types of errors and presented them in form 

of charts and tables. Tape(s) recorded from the oral test were given to a group of three 

English lecturers at the Faculty of Foreign Languages, HDU for pronunciation evaluation. 

The evaluators, informed in advance of the purpose of the evaluation, were also given a 

checklist so that the results would be more precise and suitable for the purpose of the 

research. After getting the result, they gave a written feedback to the researcher and 

participated in a discussion to work out the final results. Then, data were processed by 

using the descriptive statistics, working out the common kinds of mistakes.  

Phase 2:  The results from recording analysis were used to design a checklist for 

observation process. The results collected from observation were then compared with the 

results from recording analysis so as to suggest suitable solutions to studentsô 

pronunciation errors with final clusters.  

4. Findings and discussions 

4.1. Findings from recordings and discussions 

The data from recording analysis helped reveal (1) the final clusters errors that the 

second year students at faculty of Foreign Languages, HDU often make; and (2) which 

errors are the most common ones in their pronunciation. It should be noted that the most 

common one was chosen owing to the number of subjects that made the errors and the 

number of times they appear when students presented the talk.  
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4.1.1. Overview of the errors with final clusters of 2nd year English-majored students at HDU 

From analyzing the data collected from recordings, 230 pronunciation errors related 

to final clusters were found, including 200 reduction errors and 30 substitution errors. 

Below is the chart that shows the percentage of the two types of errors: 

 

Chart 1. Types of errors 

As can be seen from the chart, reduction (occured 200 times) is more common than 

substitution (occurred 30 times). In other words, reduction is the major problem that the 

second-year students at HDU face.   

Basing on the number of students who commit the errors, we can conclude that 

reduction is the most common error. Of all the subjects, 100% made errors with consonant 

reduction (30 students) and 60% (18 students) made substitution errors.  

Interestingly, no insertion error was found in the data although this error still 

appeared in some previous research [8] [10]. 

4.1.2. Details of the errors with final clusters of second-year English major students at HDU 

4.1.2.1. Reduction 

As mentioned in the previous part, reduction is the most common error that the 2nd 

year students at HDU make. Below is the table which demonstrates the details of reduction 

errors found in the data from the recordings. 

Table 1. Reduction errors found in the data from recordings 

Consonant clusters 
Sound(s) 

omitted 

Number of 

subjects 

with errors  

Occurrence 

times 

Pre-final + 

Final + 

(Post-final)  

Pre-final /l/ 

/ld/ /l/, /d/ or /ld/ 7 8 

/ls/ /s/ 1 1 

/lp/, /lps/ /l/ 6 7 

/lz/ /z/ 1 1 

/lf/  /f/ 1 1 

/lɗ/ /ɗ/ 5 5 

/lt/ /t/ 4 4 

/lvz/ /v/ 1 1 

/lvd/ /vd/ 1 1 

/lm/ /l/ 1 1 

87%

13%

Reduction

Substitution
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Pre-final /n/ 

/nt/ or /nts/ /t/ or /ts/ 23 39 

/nd/ or /ndz/ /d/ or /dz/ 22 43 

/ns/ /s/ 1 1 

/nz/ /z/ 2 2 

/ndᾎ/, /ndᾎd/ /dᾎ/ or /dᾎd/ 2 2 

/nɗs/ /ɗ/ 1 1 

Pre-final /m/ 
/mz/ /z/ 1 1 

/mp/ /p/ 1 1 

Pre-final /Ǽ/ /Ǽk/ /k/ 3 3 

Pre-final /s/ /st/ /t/ 22 48 

Final + Post-final(s) 

/ts/ /s/ 1 1 

/pts/ /t/ 1 1 

/kt/ or /kts/ /t/ or /ts/ 9 11 

/ks/ or /kst/ /s/ or /st/ 5 6 

/vd/ or /vz/ /d/ or/z/ 4 4 

/bz/ /z/ 1 1 

/gd/ /d/ 1 1 

/tώt/ /t/ 1 1 

/fts/ /s/ 1 1 

/dz/ /z/ or /zd/ 2 2 

From the Table 1, it can be seen that the errors with final clusters /nt(s), nd(z), st/ are 

very common among the subjects. The frequency these final clusters appeared in the 

subjectsô talk is also relatively high (/nt(s)/ - 39 times; /nd(z)/ - 43 times; /st/- 48 times). 

Therefore, it should be noted for correcting. In addition, some of the sounds such as /ɗ, dᾎ/ 

at the end of words are really hard for Vietnamese learners to pronounce, so subjects tend 

to delete them. Details of the two types of final clusters are as followed.  

Considering the first case (Pre-final + Final + (Post-final)), there were two tendencies 

to which the final clusters are mispronounced basing on the pre-final consonants: deleting 

the pre-final and deleting the final or post-final sounds. 

Firstly, when the liquid sound /l/ stands as the pre-final, it tends to be omitted. This 

type of error was made by 33% of the subjects (10 students). 

E.g.  child   /tώaild/ Ą /tώaid/ 

  help  /help/ Ą /hep/ 

  film  /film/ Ą /fim/ 

The consonant following /l/ is often deleted (accounting for 53%). 

E.g. difficult  /difikᴅlt/ Ą /difikᴅl/ 

  health  /helɗ/ Ą /hel/ 

  else   /els/ Ą /el/ 

Secondly, when /n/, /m/, /Ǽ/ - nasal sounds ï stand as pre-final, the students tend to 

delete all or keep the first and the last sound in a cluster while deleting the middle ones. 

The phenomenon was found with 100% of the subjects. 
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E.g.  went   /went/ Ą /wen/ 

  environment  /invairᴅnmᴅnt/ Ą /invairᴅnmᴅn/ 

  friends  /frendz/ Ą /fren/ 

Thirdly, when the pre-final sound is a fricative /s/, the students tend to delete the 

final sounds. 26 students made this error (87%). 

E.g.  fast   /fa:st/ Ą /fa:s/ 

  first   /fὒΈst/ Ą /fὒΈs/ 

  ask  /aΈsk/ Ą /aΈs/ 

Considering the second case {Final + post-final(s)}, it is noted that the final 

consonant is hardly deleted while the second element of two-element clusters and third of 

three-element clusters are often omitted. Many students just pronounced the first 

consonants of the long clusters and deleted all the consonants that go after them.  

E.g.  next   /nekst/ Ą /nek/ (/s/ & /t/ were deleted) 

  mixed   /mὤkst/ Ą /mik/ 

There were a few cases of deleting a second element of three-element clusters. For 

example, accepts /ᴅksepts/ was pronounced as /ᴅkseps/ (/t/ was deleted). 

In short, the analysis above shows that the students made the sound omission error. 

It is easy to understand why final clusters were omitted so frequently. As known, 

Vietnamese is monosyllabic language, so the students never have to pronounce clusters of 

consonants. Whatôs more, the habit of ñswallowingò the ending sound in the mother tongue 

is in fact a negative transfer that inhibits the pronunciation of ending sounds in general and 

final clusters in particular in the target language.  

4.1.2.2. Substitution 

Of the two common final cluster errors that the subjects committed, the substitution 

errors come second. The following table incorporates the data on studentsô substitution 

errors found from recordings. 

Table 2. Substitution errors found in the data from recordings 

Consonant clusters Sound(s) substituted 
No. of subjects 

with errors  

Repetition 

times 

/lɗ/ ɗ=t or óthô in Vietnamese 2 2 

/ώt, st/ ώ=s 2 2 

/pt/ t = d 1 1 

/nz, mz, dz, vz, lz, Ǽz/ z = s 14 21 

/ndᾎ/ dᾎ = z 2 2 

/nt/ t = s 1 1 

/nd/ d =t 1 1 

As has been shown in Table 2, the subjects tend to replace the English sound by the  

Vietnamese one or confuse similar sounds. The English sound replaced by a Vietnamese 

one is /ɗ/, for example, health /helɗ/ Ą ɗ pronounced as óthô in Vietnamese. It can be 

explained that this sound is strange to Vietnamese speakers. Because of the influence of 

their mother tongue, the students simply substitute them with a similar Vietnamese sound. 
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Regarding sound confusion, the most frequent errors are /s/ and /z/ (repeated 21 

times). For instance, loves /lᾈvz/ Ą /lᾈvs/; kids /kidz/ Ą /kids/. The mispronunciation of 

/z/ to /s/ sounds may be due to the fact that the students often push the air through the 

mouth too hard.  

Also in reference to the confusion of sounds, the mispronunciation of /dᾎ/ to /z/ may 

be due to the carelessness and laziness of the students. The students who made this kind of 

mistakes usually do not try to find out how the tongue acts in each case, instead they 

produce all these sounds similarly which results in their mispronunciation as found in this 

study. The mispronunciation of /ɗ/ to /t/ may be because of the difficulty the students have 

when articulating the sound /ɗ/ at the end of the word.  

4.2. Findings from observation and discussions 

The data collected from taking notes of each studentôs reading out loud the 

problematic words found from recordings are shown in the following table: 

Types of errors Times 

Reduction 34 

Substitution 7 

Insertion 6 

Table 3. Errors from reading out loud the 230 problematic words from recordings 

The data from observation show that the subjects still made mistakes when they read 

single words. The most common error that the subjects made is reduction error, and it 

should be noted that there appear insertion errors.  

Details of errors from observation are as follows: 

Table 4. Details of errors from observation data 

Types of errors Consonant clusters Notes 

Reduction 

Two-consonant clustersΈ 

/lɗ, lm, lp, lz/ 

/lt/ 

/dz/ 

/ndᾎ/ 

/nd/ 

 

/l/ 

/lt/ or /t/       Ą deleted 

/d/ 

/dᾎ/ 

/n/ 

Three-consonant clustersΈ 

/nts, pts, kst, ndz, kts, 

nɗs, lvz, lvd, fts/. 

/lps/ 

The middle sound of a three-consonant 

cluster is deleted. 

/l/ is omitted. 

Insertion /ld, pt/ 
/ᴅ/ is inserted into the middle of a 

cluster. 

Substitution /lɗ, ώt, ndᾎ, dz/ ɗ = t, ώ = s, dᾎ =z, z=s 
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As can be seen from Table 4, the subjects mainly made errors with long clusters and 

clusters with difficult sounds. The reason is perhaps that students had little time to practise 

them in the Pronunciation course mentioned above. Also, the teacher might not have raised 

their studentsô awareness enough about these clusters in particular and clusters in general. 

4.4. Strategies to correct common errors in pronouncing final clusters 

It is stated in the previous discussion that the difficulty with final clusters may result 

from teachersô neglect, studentsô carelessness or laziness, and the negative influence of 

mother tongue. Within the limited scope of this article, I would like to suggest some 

activities as well as techniques for correcting the final clusters errors that the thirty second-

year students actually made.  

Firstly, the results show that students tend to make more final clusters errors in 

spontaneous speeches than when reading single words.  Therefore, it is important to help 

them form a habit for pronouncing these final clusters. It is impossible to form a habit 

without practice. The following activities have been compiled and adapted from Celce-

Murcia, Brinton & Goodwin [3], Pham Thi Cam Chi [4], and Deshayes [5] in order to help 

students practise final clusters.  

Brainstorming: Ask students to think of words that contain the target sound of the 

lesson. When students provide enough words, give them communicative activities so that 

they can practice the sound using those words. 

The following example is a brainstorming task to practise the final cluster /nt(s)/:  

Ask students to find at least five words containing the final cluster /nt(s)/.  

E.g.: went, plant, excellent, want, important, parents, restaurants, spent 

Follow-up activity: Work in pairs. Tell your partner what you did in your last summer 

holiday using at least five words that you have just listed above.  

E.g: Last summer, I went to Hue with my parents. We were there for three days. We 

spent most of the time sightseeing there. We visited a lot of places such as Thien Mu 

pagoda, Khai Dinh mausoleum, and many other mausoleums. Also, we went along Huong 

River by boat. Huong River in the evening was very romantic. The local food, especially 

ñBun bo Hueò, ñChe Hueò were excellent there. I had a good time there, and I really want 

to go back to Hue soon. 

Dialogues: With a word list containing the target sound of the lesson, teachers can 

ask students to work in pairs and create their own dialogues using those words. Next, 

students practise the dialogues they have created.  

E.g.: A brief dialogue might be: 

Ted: I couldnôt finish the sixth problem. 

Joe: Thatôs because you forgot to reduce 6/6/ (six/sixths) to 1. 

Short oral presentation: Teachers ask students to find at least five English words 

with final clusters on a certain topic. Then each learner presents a personal list to the class 
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and makes a short oral presentation that includes at least five of the words. Classmates 

should evaluate the speakerôs production of consonant clusters as to how accurate, natural, 

and easily intelligible they sound. 

Secondly, the results indicate that the subjects in this research had difficulties 

pronouncing long clusters (three-element clusters), clusters containing the complex sound 

such as /ώt, ndᾎ/, and clusters with the consonant ñlò and its following consonants. To help 

correct these final clusters errors, I adopted some teaching suggestions from other researchers 

[2] [3] [5] [8] [9]. Hopefully, these suggestions can partly lessen the studentsô problems.  

Practicing using two words:  For example, to practice the final cluster /ld/ as in 

ñfieldò, use the phrase ñfeel downò. The students can gradually eliminate more and more 

of the second word. E.g: Feel down Ą feel dow Ą feel d Ą field. 

Breaking down consonant clusters: Add and change sounds gradually to practice 

long clusters, for instance, ósixô, ósixthô, sixthsô. Practice slowly at first and then speed up 

as confidence increases.  

Some important deletions made by native speakers of English should be noted for 

students as follows: (1) the loss of a fricative when two or more fricatives occur together; 

for example, /ɗ/ is lost in asthma, /ð/ is lost in clothes brush; (2) the deletion of /t/ and /d/ 

in informal speech when they occur between two other consonants (e.g. friends, best man, 

childôs); (3) the loss of /k/ in similar contexts, e.g. asked.  

A sample dialogue can be used for studentsô practising cluster simplification 

strategies as follows: 

Vet: What seems to be the problem with Peppy? 

Pet owner: Well, he just isnôt very peppy, Doc. He acts so tired all the time. He just 

lifts his head up and sighs.  

Vet: And this started two months ago? Can you give me some more facts? 

Pet owner: Sure. One of Peppyôs big strengths as a guard dog is his bursts of energy. 

I asked him to fetch the newspaper yesterday and he left three-fourths of it on the doorstep. 

What does your medical textbook say about that? 

Vet: Well, let me look it up under ñlistless dogs.ò It says here that ñfour/fifths of all 

listlessness in dogs is due to poor diet.ò Why donôt I give you some pep pills? Feed him 

one every day and weôll see how he acts next week.  

5. Conclusion 

There are three major types of errors that the second year students at HDU often 

make with final clusters: reduction, substitution and insertion. The first type of error, 

reduction, is committed by most of the second-year students. For the second type of error, 

substitution, students tend to replace an English sound by a Vietnamese one or confuse 

similar sounds. The results show that students often confuse /z/ with /s/, /ώ/ with /s/, or /dᾎ/ 
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with /z/. The last type - Insertion - which does not appear in studentsô real speech but in 

their reading out loud single words- is also one error with final clusters that students make.  

Some strategies are suggested for students, including brainstorming, dialogues, 

short oral presentation, information gap activity, Practicing using two words and 

Breaking down consonant clusters. Those strategies focus on developing studentsô habit 

of pronouncing final clusters in the speaking process as well as helping them overcome 

the difficult final clusters.  
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Abstract:  In this paper, we provide some new fixed point theorems for mappings satisfying 

Fisher - type contractive conditions in metric spaces. Some examples are also given to 

illustrate our results. 
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1. Itroduction and Preliminaries  

In 1976, Fisher [1] introduced and proved several results for mappings satisfying 

different contractive conditions. One of them is the following fixed point theorem. 

Theorem 1.1. ([1]) If T  is a continuous mapping of the compact metric space X  

into itself satisfying the inequality 

( ) ( ) ( ) ( )( )
2

, , . , . , ,d Tx Ty d x Tx d y Ty c d x Ty d y Txè ø< +ê ú  (1.1) 

for all distinct ,x y in X , where 0 c¢ , then T  is a fixed point mapping. Futher, if 

0 1c¢ ¢, then the fixed point of T  is unique. 

In this article, we call mappings satisfying the condition (1.1) as Fisher-type 

contractive mappings. It is well-known that every Banach contraction mapping is 

continuous. Here, Fisher also requires the continuity of the mapping. We consider the 

relationship between the continuity of mappings and the existence of fixed points, as well 

as the necessity of the compactness of the underlying spaces. 

First of all, we recall some definitions that will be used in this article. 

Definition 1.1. A metric space ( , )X d  is said to be boundedly compact if every 

bounded sequence in X  has a convergent subsequence. 

Definition 1.2. Let ( , )X d  be a metric space and T  be a self-mapping on X . The 

orbit of T  at x XÍ  is defined as: { }2 3( ) , , , ,xO T x Tx T x T x= » 

Definition 1.3.  Let ( , )X d  be a metric space and T  be a self-mapping on X . Then, 

X  is said to be T -orbitally compact if every sequence in ( )xO T  has a convergent 

subsequence for all x XÍ . 
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In ([2]), H. Garai et al. have shown that T -orbital compactness of a space depends 

on the mapping T  defined on it. 

Definition 1.4.  Let ( , )X d  be a metric space and :T X X  be a self mapping. T  

is said to be orbitally continuous at a point z  in X  if for any sequence { } ( )n xx O TÌ  for 

some , nx X x zÍ   as n¤ implies nTx Tz  as n¤. 

Definition 1.5. Let ( , )X d  be a metric space and :T X X  be a mapping. For 

0x XÍ  the sequence { }nx  defined by 1n nx Tx-=  for 1n²  is called Picard iteration 

sequence with the initial point 0x . The mapping T  is said to be a Picard operator if it has 

a unique fixed point and every Picard iteration in X  converges to the fixed point. 

2. Main results 

Now, we are in a position to state our main results. 

Theorem 2.1. Let ( , )X d  be a compact metric space and let  :T X X  such that 

( ) ( ) ( ) ( )( )
2

, , . , . , ,d Tx Ty d x Tx d y Ty c d x Ty d y Txè ø< +ê ú  

for all , ,x y X x yÍ ¸  and 0 1c¢ ¢. Then, T  has a unique fixed point. 

Proof. Set inf{ ( , ) : },m d x Tx x X= Í  

Then, there exists a sequence ( )nx XË  such that ( )lim , ,n n
n

d x Tx m
¤

= and, by the 

compactness of X , there exists a subsequence ( )
knx  of ( )nx  such that 

knx u X Í , 

knTx w X Í  as .k¤ We have ( ) ( ), , as .
k kn nd x Tx d u w m k = ¤ 

If 0m>  then u w̧. 

If nTx Tw=  for n in an infinite subset I of ,  then nTx Tw w=  . So w  is a fixed 

point.  

When I  is a finite set, we denote ( ) ( ) { : , }n n m mx x x Tx Tw m I¡= = Í. 

Assume now that nTx Tw n¸ ", we have 

( ) ( )( ) ( )( )
2

, , , , , ,n n n n nd Tx Tw d x Tx d w Tw cd x Tw d w Txè ø< +ê ú  

letting n¤, we get 

( ) ( )( )
2

, , , .d w Tw d u w d w Twè ø¢ê ú  

This implies that 

( ) ( ), , .d w Tw d u w m¢ =  

And from 

( ) ( )( ) ( )( )
2

2 2 2, , , , , ,d Tw T w d w Tw d Tw T w cd w T w d Tw Twè ø< +
ê ú
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We obtain ( ) ( )2, , ,d Tw T w d w Tw m< ¢  which is a contradiction. 

Thus, we must have 0m= . Therefore, u w= . 

If nTx Tu¸ , we have 

( ) ( )( ) ( )( )
2

, , , , , ,n n n n nd Tx Tu d x Tx d u Tu cd x Tu d u Txè ø< +ê ú  

Taking the limit as n¤, we obtain ( )
2

, 0.d u Tuè ø¢ê ú  

This implies that u Tu= , i.e., u  is a fixed point of T . 

Next, we check the uniqueness of u . Arguing by contradiction, let 'u  be another 

fixed point of T , then 

( ) ( ) ( )( ) ( )( ) ( )
2 2 2

, , , , , , , ,d u u d Tu Tu d u Tu d u Tu cd u Tu d u Tu c d u u¡ ¡ ¡ ¡ ¡ ¡ ¡è ø è ø è ø= < + =ê ú ê ú ê ú 

which is a contradition. The fixed point must therefore be unique. This completes the proof 

of the theorem.                                                                                                                                         

In Theorem 2.1, the existence of the fixed point of Fisher-type contractive mappings 

without assuming the continuity of the mapping. However, at fixed point, the mapping is 

still continuous at the fixed point. 

Indeed, let ( )nx  be a sequence in X . If nx u̧ , we have 

( ) ( )( ) ( )( )
2

, , , , , ,n n n n nd Tx Tu d x Tx d u Tu cd x Tu d u Txè ø< +ê ú which implies that 

( ) ( ), , .n nd Tx Tu cd x u<    (2.1) 

By (2.1), if nx u  as n¤ then nTx Tu  as n¤. Thus, T  is continuous at 

the fixed point u . 

Theorem 2.2. Let ( , )X d  be a boundedly compact metric space and :T X X  be 

an orbitally continuous mapping such that 

( ) ( )( ) ( ) ( )
2

, , , . , . ,d Tx Ty d x Tx d y Ty c d x Ty d y Txè ø< +ê ú  

for all ,x y XÍ  with x y¸  and 0 1c¢ <. Then T  is a Picard operator. 

Proof. Let 0x XÍ  be arbitrary but fixed and consider the iterative sequence ( )nx , where 

0

n

nx T x=  for each nÍ . If the sequence ( )nx  has two equal consecutive terms, then T  must 

have a fixed point. So, we may assume that no two consecutive terms of ( )nx  are equal.  

 We denote 1( , )n n ns d x x+=
.
 Then 0ns >  for each nÍ . We have 

( )

( )( ) ( )( )

( )( )

2
2 1

0 0

1 1 1 1

0 0 0 0 0 0 0 0

1 1

0 0 0 0

1

,

, , . , ,

, ,

.

n n

n

n n n n n n n n

n n n n

n n

s d T x T x

d T x T x d T x T x c d T x T x d T x T x

d T x T x d T x T x

s s

+

- + - +

- +

-

è ø=
ê ú

< +

=

=
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Thus 1.n ns s-<  This shows that ( )ns  is a strictly decreasing sequence of positive real 

numbers. Hence, it converges to some 0b² . For each nÍ , we have 

1 1 (say).n ns s s K-< <»< =  

Thus, for all ,n m, one has 

( ) ( )

( )( ) ( )( )

( )( )

( ) ( ) ( ) ( )

( )( )

( )

222

0 0

1 1 1 1

0 0 0 0 0 0 0 0

1 1

0 0 0 0

1 1

0 0 0 0 0 0 0 0

1 1 1 1

22

, ,

, , . , ,

, ,

, , , ,

.

n m

n m

n n m m n m m n

n n m m

m m m n n n n m

n m n m

t d x x d T x T x

d T x T x d T x T x c d T x T x d T x T x

d T x T x d T x T x

c d T x T x d T x T x d T x T x d T x T x

s s c s t s t

K c K t

- - - -

- -

- -

- - - -

è ø= =è øê úê ú

< +

<

è øè ø+ + +
ê úê ú

= + + +

< + +

 

This implies that 
2 2(1 ) 2 (1 ) 0,c t cKt K c- - - + < or, ( )

1
, .

1
n m

c
t d x x K

c

+
= <

-
 

Therefore, ( )nx  is a bounded sequence in X . By the bounded compactness property 

of X , ( )nx  must have a convergent subsequence, say ( )
knx , which converges to some 

z XÍ . By the orbital continuity of T , ( )
knTx  converges to Tz. We have  

2

1

( , ),

( , ).

k k k

k k k

n n n

n n n

s d x Tx

s d Tx T x+

=

=
 

Taking the limit as k¤, we obtain 
2( , ) ( , ).b d z Tz d Tz T z= =  

We are going to show that 0b= . 

Assume that 0b> . Then, z Tz¸  and  

( ) ( )( ) ( ) ( )
2

2 2 2, , , . , . , .d Tz T z d z Tz d Tz T z c d z T z d Tz Tzè ø< +
ê ú

 

Thus, 
2( , ) ( , ),d Tz T z d z Tz<  which is a contradiction.  

So the sequence ( )ns  must converge to 0. For all ,n m, 

( ) ( )

( )( ) ( )( )

( )( )

( ) ( ) ( ) ( )

( )( ) ( )( )

22

0 0

1 1 1 1

0 0 0 0 0 0 0 0

1 1

0 0 0 0

1 1

0 0 0 0 0 0 0 0

1 1 1 1

, ,

, , . , ,

, ,

, , , ,

, , .

n m

n m

n n m m n m m n

n n m m

m m m n n n n m

n m n n m m n m

d x x d T x T x

d T x T x d T x T x c d T x T x d T x T x

d T x T x d T x T x

c d T x T x d T x T x d T x T x d T x T x

s s c s d x x s d x x

- - - -

- -

- -

- - - -

è ø=è øê úê ú

< +

<

è øè ø+ + +
ê úê ú

= + + +

 



Hong Duc University Journal of Science, E7, vol.12, p.(23 - 30), 2022 

27 

This implies that  ( ), 0,  as , .n md x x m n ¤ 

Thus, ( )nx  is a Cauchy sequence. As the subsequence ( )
knx  of ( )nx  converges to 

z , the limit of ( )nx  must be z  and z w= . Assume that nTx Tz¸ , we have 

( ) ( )( ) ( )( )
2

, , , , , .n n n n nd Tx Tz d x Tx d z Tz cd x Tz d z Txè ø< +ê ú  

Letting n¤, we get ( )
2

, 0.d z Tzè ø¢ê ú  

This implies that  z Tz= , i.e., z  is a fixed point of T . 

Next, we check the uniqueness of z . Arguing by contradiction, assume z¡ is another 

fixed point of T . Then 

[ ] [ ] [ ]
2 2 2

( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( , ) .d z z d Tz Tz d z Tz d z Tz cd z Tz d z Tz c d z z¡ ¡ ¡ ¡ ¡ ¡ ¡= < + =  

Since 0 1c¢ <, we obtain [ ]
2

( , ) 0d z z¡ = . This implies z z¡= . 

Therefore, z  is the unique fixed point of T . Since we take 0x  as an arbitrary point, 

for every x XÍ , the iterative sequence ( )nT x  converges to z , i.e., T  is a Picard operator.                                                                              

Example 2.1. Let [1.8, )X= ¤ with the usual metric ( , ) | |d x y x y= -  for all 

,x y XÍ . Then, ( , )X d  is a compact metric space. We consider the mapping :T X X  

defined by 

3 1
if 1.8 2,

4 2

2 if 2.

x x
Tx

x

ë
+ ¢ <î

=ì
î ²í

 

Then T  satisfies the Fisher -type contractive condition (1.1) with 0.99c= . 

Proof.  

Cases 1: If , [1.8, ),x y x yÍ ¤ ,̧ then ( , ) 0d Tx Ty=  and the inequality (1.1) holds. 

Cases 2: If , [1.8,2),x y x yÍ ¸ . Let ,S x y P xy= + =. We have: 
2 4 .S P²  

Then 
2 2 29 9

[ ( , )] ( ) ( 4 ),
16 16

d Tx Ty x y S P= - = -  and  

 

( )( ) ( )( )

( ) 2

1 1 1 1 3 1 3 1
( , ) ( , ) ( , ) ( , )

2 4 2 4 4 2 4 2

1
2 2 4 3 2 4 3 2

16 16

1
4 2 12 49 2 4 .

16 16

d x Tx d y Ty cd x Ty d y Tx x y c x y y x

c
x y x y y x

c
S P S P S

å õå õ å õå õ
+ = - - + - - - -æ öæ ö æ öæ ö

ç ÷ç ÷ ç ÷ç ÷

= - - + - - - -

= - + + - + -

 

Thus, 
2( , ) ( , ) ( , ) ( , ) [ ( , )]d x Tx d y Ty cd x Ty d y Tx d Tx Ty+ >  which is equivalent to 

 ( ) ( )2 24 2 12 49 2 4 9 4 ,S P c S P S S P- + + - + - > - or 
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2 212 49 2 4 9 37 2 4c S P S S P S- + - > - + - (2.2) 

If 
29 37 2 4 0S P S- + - < then (2.2) holds. 

If  
29 37 2 4 0S P S- + - ² and 0.99c= , we have 

( )( )( )2 2 20.99 12 49 2 4 9 37 2 4 2.88 11.51 0.02 0.04 .S P S S P S S P S- + - = - + - + - - + 

We have 
22.88 11.51 0.02 0.04 2.88 4 11.51 0.02 0.04

0.01 0.02 0.04 0.

S P S P P S

P S

- - + > ³ - - +

= - + >
 

Thus, ( )2 20.99 12 49 2 4 9 37 2 4 0.S P S S P S- + - > - + - ² 

This implies that  2 20.99 12 49 2 4 9 37 2 4,S P S S P S- + - > - + - then (2.2) holds. 

Cases 3: If [1.8,2), 2x yÍ ² ,  

then  

2

2 3 3
[ ( , )]

2 4
d Tx Ty x

å õ
= -æ ö
ç ÷

and with 
3

0.99
4

c= > , we have 

2

2

3 3
( , ) ( , ) ( , ) ( , ) (2 )

2 4

3 3 3
(2 )

4 2 4

3 3
[ ( , )] ,

2 4

d x Tx d y Ty cd x Ty d y Tx c x x

x x

x d Tx Ty

å õ
+ = - -æ ö

ç ÷

å õ
> - -æ ö

ç ÷

å õ
= - =æ ö
ç ÷

 

and the inequality (1.1) holds. Hence, the inequality (1.1) holds with 0.99c= .                                                                                

Clearly, X  is boundedly compact and T  is a mapping satisfying (1.1). T  has a fixed 

point and 2 is the only fixed point of T .  

Theorem 2.3. Let ( , )X d  be a T -orbitally compact metric space, where 

:T X X  is an orbitally continuous mapping such that 

( ) ( )( ) ( ) ( )
2

, , , . , . ,d Tx Ty d x Tx d y Ty c d x Ty d y Txè ø< +ê ú  

for all ,x y XÍ  with x y¸  and 0 1c¢ <. Then, T  has a unique fixed point z  and for 

any ,x XÍ  the sequence of iterates ( )nT x  converges to z . 

Proof. Let 0x XÍ  be arbitrary but fixed and consider the sequence ( )nx , where 

0

n

nx T x=  for each nÍ .  

Since X  is T -orbitally compact, the sequence ( )nx  has a convergent subsequence, 

say ( )
knx , and let ( )

knx  converging to z  in X . By the orbital continuity of T , ( )
knTx  

converges to Tz. 
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Now, proceeding as in Theorem 2.2, we can similarly prove that the sequence 

( )1( , )n nd x x+  converges to 0 and that the sequence ( )nx  is a Cauchy sequence and hence 

nx z X Í  as n¤. Therefore, z  is the unique fixed point of T .                                                       

Theorem 2.4. Let ( , )X d  be a complete metric space and T  be a self-mapping on 

X  such that 

1. ( ) ( )( ) ( ) ( )
2

, , , . , . , (0 1)d Tx Ty d x Tx d y Ty c d x Ty d y Tx cè ø< + ¢ <ê ú  for all ,x y 

in X  with x y¸ , 

2. for any x XÍ  and for any 0> , there exists 0d> such that 

( ),i jd T x T x d< + implies ( )1 1,i jd T x T x+ + ¢ , for any ; {0}i jÍ Ç . 

Then, T  has a unique fixed point z  and for any x XÍ , the sequence of iterates 

( )nT x  converges to z . 

Proof. Let 0x XÍ  be arbitrary but fixed and consider the sequence ( )nx , 

where 
0

n

nx T x=  for each nÍ . Let the sequence ( )nx  do not have two equal 

consecutive terms, i.e., 1n nx x +¸  for all nÍ .  

Then, similar to Theorem 2.1, it is not difficult to check that the sequence of real 

numbers ( )ns , where ( )1,n n ns d x x+=  is a decreasing sequence and also this sequence is 

bounded below. Thus, this sequence is convergent and let lim inf{ , }.n n
n

s b s n
¤

= = Í  

Therefore, 0b² . 

Assume that 0b> . Then, there exists 0d>  and nÍ  such that .ns b d< +  

This implies that  ( )1, .n nd x x b d+ < +  

Thus, by the given condition, we have ( )1 2,n nd x x b+ + ¢ , i.e., 1ns b+¢ , ( )ns  is a 

decreasing sequence, so 2 1n ns s b+ +< ¢. This leads to a contradiction. Thus, we must have  

( )1lim , 0n n
n

b d x x+
¤

= =. 

Now for any ,n mÍ , we have 

( ) ( )

( )( ) ( )( )

( )( )

( ) ( ) ( ) ( )

( )( ) ( )( )

22

0 0

1 1 1 1

0 0 0 0 0 0 0 0

1 1

0 0 0 0

1 1

0 0 0 0 0 0 0 0

1 1 1 1

, ,

, , . , ,

, ,

, , , ,

, , .

n m

n m

n n m m n m m n

n n m m

m m m n n n n m

n m n n m m n m

d x x d T x T x

d T x T x d T x T x c d T x T x d T x T x

d T x T x d T x T x

c d T x T x d T x T x d T x T x d T x T x

s s c s d x x s d x x

- - - -

- -

- -

- - - -

è ø=è øê úê ú

< +

<

è øè ø+ + +
ê úê ú

= + + +

 

Thus, ( ), 0 as , .n md x x m n ¤ 
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This implies that ( )nx  is a Cauchy sequence and, we have, lim n
n

x z
¤

= . 

Consider nTx Tz¸ , we have 

( ) ( )( ) ( )( )
2

, , , , , ,n n n n nd Tx Tz d x Tx d z Tz cd x Tz d z Txè ø< +ê ú  

Taking the limit as n¤, we obtain 

( )
2

, 0.d z Tzè ø¢ê ú  

This implies that z Tz= , i.e., z  is a fixed point of T . 

Next, we check the uniqueness of z . Arguing by contradiction, let 'z  be another 

fixed point of T , then 

[ ] [ ] [ ]
2 2 2

( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( , ) .d z z d Tz Tz d z Tz d z Tz cd z Tz d z Tz c d z z¡ ¡ ¡ ¡ ¡ ¡ ¡= < + =  

Since 0 1c¢ <, we have [ ]
2

( , ) 0d z z¡ = . 

This gives z z¡= .                                                                                                                          
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Abstract: Bismuth-based ferroelectric ceramics are currently under intense investigation 

for the potential as Pb-free alternatives to lead zirconate titanate-based (Pb(Zr,Ti)O3-

based) piezoelectrics. In this work, first-principle calculations were performed for the 

electronic structures of sodium bismuth titanate (Bi0.5Na0.5TiO3) materials with all possible 

crystal symmetries, including rhombohedral, monoclinic, tetragonal, and rhombohedral. 

We expected that our works could help further understand the role of phase transition in 

lead-free ferroelectric Bi0.5Na0.5TiO3 materials.  

Keywords: Bi0.5Na0.5TiO3, Lead-free ferroelectric, First principle calculation. 

1. Introduction 

Lead-based ferroelectric Pb(Zr,Ti)O3 materials have been given much attention because 

their piezoelectric, ferroelectric, and dielectric properties are better than lead-free ferroelectric 

materials. With the rapid industrial development, the amounts of Pb used in electronic devices 

have increased, seriously affecting the environment and human health. Thus, the performance 

of eco-friendly lead-free ferroelectric materials, such as Bi0.5Na0.5TiO3, should be improved 

[1]. Sodium bismuth titanate BNT materials, first fabricated by Smolensky et al. in 1960 [2], 

are ferroelectric materials with Curie temperature of 320̄C, remanent polarization of 38 

mC/cm2, and coercive field of 73 kV/cm at room temperate [2] [3]. Bi0.5Na0.5TiO3 materials 

have a low piezoelectric coefficient of ~70-80 pC/N due to their high coercive field [3]. 

Bi0.5Na0.5TiO3 materials exhibited rhombohedral structure at room temperature and monoclinic 

symmetry [4] [5]. Pronin et al. [6] obtained that the first phase transition tetragonal-cubic phase 

occurred at 320̄C, whereas the second phase transition temperature of the rhombohedral-

tetragonal phase was 540̄C as they determined the Curie temperature. The average symmetries 

of rhombohedral, monoclinic, and cubic BNT structures are R3c, Cc, P4bm, and Fm-3m space 

groups, respectively. 

Recently, optical bandgap, diffuse scattering, infrared, and high-pressure Raman 

spectra of BNT have been extensively studied experimentally [7-10]. The crystal structure 

of Bi0.5Na0.5TiO3 materials was determined by neutron powder diffraction at 698 K [7]. In 

the theoretical aspect, first-principle calculations were widely adopted to study the 
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structure, band structure, and electronic properties of perovskite ferroelectric materials, 

including BNT [11]. BNT with a high-temperature cubic phase is a semiconductor, 

discovered by Xu and Ching [12]. Bujakiewicz-Koronska and Natazon investigated the 

elastic properties of BNT crystals [13]. Gröting et. al. [14] calculated the phase stability of 

BNT under pressure using ab-initio supercell calculations, and Niranjan et. al. [15] 

investigated the dielectric properties and phonon frequencies for the rhombohedral crystal 

structural by density functional perturbation theory. Most theoretical studies on BNT 

focused on rhombohedral and cubic phases, while only a few works were conducted on 

tetragonal and monoclinic phases. Tetragonal and monoclinic phases are transitional 

between the rhombohedral and cubic ones of BNT, and they are often related to the 

interplaying between different phases [16]; it would be beneficial to study all the four 

phases of BNT under the same approach to provide comprehensive perspective. In this 

work, we have performed first-principle calculations on BNT for all four phases possible.  

2. Experiments 

In this work, all DFT calculations were performed using the Cambridge Serial Total 

Energy Package (CASTEP) module in the Materials Studio software. For exchange-

correlation energy, we adopted the generalized gradient approximation (GGA) using 

Perdew - Burke - Ernzerhof (PBE) exchange-correlation functionals [16], which is 

sufficiently accurate to describe the crystal structures and electronic properties of 

perovskite compounds [17]. The energy cutoff of the plane-wave basis functions was set 

to be 500 eV, which yields sufficiently convergence of the total energy differences better 

than 10-6 eV per atom. The Monkhorst-Pack scheme was used to sample the Brillouin zone; 

and the k-point sampling method [18] was chosen for the reciprocal space integrations over 

the Brillouin zone with good convergence for the calculated properties, where the k-point 

mesh of 5 × 5 × 4 is used. The structures were fully relaxed with convenient primary cells. 

Four BNT phases, including rhombohedral, monoclinic, tetragonal, and cubic, were 

simulated using R3c, Cc, P4bm, and Fm-3m space groups, respectively. The cubic and 

rhombohedral BNT structures were assumed from the experimental lattice parameters [19].  

3. Results and Discussion  

3.1. Crystal structures 

Fig.1 shows four different crystal structures of BNT. Adopting of an ordered 

structure facilitates the calculations and helps avoid computational artifacts [20]. The 

replacement of Na and Bi atoms at A-sites leads to lower, the symmetries of the 

rhombohedral, monoclinic, tetragonal, and cubic BNT phases to R3c, Cc, P4bm, Fm-3m, 

respectively. At room temperature, the optimized lattice constants for the conventional cell 

of the rhombohedral phase are a = 5.501 Å and c = 13.496 Å, which are close to the 

experimental value of 5.488 Å and 13.504 Å [19]. Meanwhile, at a higher temperature, the 

lattice constants of monoclinic, tetragonal, and cubic phases have been optimized close to 

the experimental values, respectively.  Table 1 presents the optimized lattice constants of 

the four BNT phases in comparison to the experimental values by G. O. Jones [7], H. Lü 

[19] and E. Aksel [21] (within 1%-2%). 
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Table 1. Optimized calculated and experimental lattice parameters (Å) and atomic 

coordinates in four BNT phases 

Rhombohedral phase 

 Calc. Ref. [19] 

a 

c 

Ŭ 

g 
Na 

Bi 

Ti 

 

O 

 

5.501 

13.496 

90̄  

120̄  

(0 0 0.259) 

(0 0 0.783) 

(0 0 0.008) 

(0 0 0.503) 

(-0.338 -0.101 0.567) 

(-0.233 -0.333 0.405) 

5.488 

13.504 

90̄  

120̄  

(0 0 0.257) 

(0 0 0.757) 

(0 0 0) 

(0 0 0.500) 

(-0.336 -0.126 0.577) 

(-0.207 -0.330 0.410) 

Monoclinic phase 

 Calc. Ref. [21] 

a 

b 

c 

Ŭ 

ɓ 

Na 

Bi 

Ti 

O 

 

 

9.555 

5.508 

5.634 

90̄  

125.742̄ 

 (0.502 0.750 -0.006) 

(-0.003 0.256 0.036) 

(0.255 0.243 0.744) 

(-0.014 0.180 0.414) 

(0.189 0.486 0.901) 

(0.262 0.981 0.951) 

9.526 

5.483 

5.507 

90̄  

125.344̄ 

 (0.500 0.750 0) 

(0 0.250 0) 

(0.270 0.247 0.742) 

(0.008 0.194 0.493) 

(0.177 0.481 0.862) 

(0.241 0.996 0.955) 

Tetragonal phase 

 Calc. Ref. [7]  

a 

c 

Ŭ 

Na 

Bi 

Ti 

O 

 

5.410 

7.925 

90̄  

 (0 0.5 0.253) 

(0 0.5 0.759) 

(0 0 0.019) 

(0 0 0.259) 

(0 0 0.761) 

5.519 

7.817 

90̄  

 (0 0.5 0.261) 

(0 0.5 0.761) 

(0 0 0) 

(0 0 0.257) 

(0 0 0.757) 

Cubic phase 

 Calc. Ref. [19] 

a 

Ŭ 

Na 

Bi 

Ti 

O 

7.765 

90̄  

 (0 0 0) 

(0.5 0.5 0.5) 

(0.25 0.25 0.25) 

(0.25 0.25 0) 

7.827 

90̄  

 (0 0 0) 

(0.5 0.5 0.5) 

(0.25 0.25 0.25) 

(0.25 0.25 0) 
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Figure 1. Crystal structures of (a) rhombohedral, (b) monoclinic, (c) tetragonal,  

and (d) cubic phase of BNT 

The corresponding atomic coordinates are also given for the four BNT phases in 

Table 1. Atoms in rhombohedral and monoclinic phases are imposed by the symmetries of 

space groups R3c and Cc, respectively, where the symmetries allow them to be relaxed 

separately. In contrast, atoms in the tetragonal and cubic phases of BNT have higher 

symmetry structures. Ti atom of the cubic phase has six nearest O atoms, and Na or Bi 

atom has twelve nearest O atoms. Thus, Ti atoms are in the center of oxygen-octahedral 

and Na, or Bi is in the center of oxygen-cuboctahedral [19]. From the cubic phase, the 

displacements of Na, Bi, and Ti atoms with respect to the center of the O cages are 

calculated for the tetragonal phase. In addition, Na and Bi atoms in the rhombohedral and 

monoclinic phases have been arranged into layer-by-layer, being favorable conditions for 

supercell calculations. 

3.2. Electronic structures 

There is some disparity between different calculations on the band structure of BNT. 

For the rhombohedral phase, H. Lü [19] gave an indirect bandgap of 2.82 eV, while R. 

Bujakiewicz-Koronska [13] predicted a value of about 2 eV. For the tetragonal and cubic 

phases, H. Lü [19] gave a bandgap of 2.29 eV and 1.96 eV, respectively. As this work 

results are shown in Fig.2, the rhombohedral phase has a direct bandgap of 2.764 eV, while 

the monoclinic phase, tetragonal phase, and cubic phase have indirect bandgaps of 2.575 
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eV, 2.189 eV, and 1.473 eV, respectively. For the rhombohedral, monoclinic, and cubic 

phases, the top of the valence band is located at the G(0 0 0) point. The bottom of the 

conduction band for the rhombohedral phase is also located at the G point, while for the 

monoclinic and cubic phases, it is at the B and R points, respectively. The direct bandgaps 

were estimated at 2.764 eV, 2.580 eV, 2.192 eV, and 2.150 eV for rhombohedral, 

monoclinic, tetragonal, and cubic BNT materials, respectively. Overall, the bandgap values 

of the four BNT phases indicate that they are suitable optical materials. 

     

Figure 2. Band structures of (a) rhombohedral, (b) monoclinic, (c) tetragonal,  

and (d) cubic BNT phases 

Fig.3 shows the contribution of each cation and anion in the calculated partial 

densities of state (PDOS) of the four BNT phases. In all the cases, the contributions of p-

orbitals of Bi, d-orbitals of Ti, and p-orbitals of O are significant within the low energy 

range. In addition, the hybridization of d-orbitals of Ti and p-orbitals of O occurs within 

the low energy range of approximately -6 eV. In the range above Fermi level, the 

contribution of Ti d-orbitals is appeared to create a boundary of the bandgap; Bi p-orbitals 

also contributed to this range. Still, it is the only evidence in the high-temperature phases. 
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Figure 3. The densities of state of (a) rhombohedral, (b) monoclinic, (c) tetragonal, and (d) 

cubic phase of BNT 

4. Conclusion  

We have studied the structural and electronic properties of (-Bi0.5Na0.5TiO3-) materials 

in four possible phases using first-principle calculations. The equilibrium structures were 

determined, and the contributions of p-orbitals of Bi and O, and Ti d-orbitals are significant 

within the low energy range. The contribution of d-orbitals of Ti is essential creating the 

bandgap, and p-orbitals of Bi are also crucial in the high symmetry phases. The direct 

bandgap of 2.76 eV and indirect bandgap of 1.5~2.6 eV for the rhombohedral and higher 

symmetry phases, respectively. Thus, BNT materials have good potential in optical 

materials. Furthermore, we expected that our works could help to understand the role of 

phase transition in lead-free ferroelectric sodium bismuth titanate materials. 
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INTEGRATED RESOLVENT OPERATORS AND NONDENSELY  

INTEGRODIFFERENTIAL EQUATIONS INVOLVING THE 

NONLOCAL CONDITIONS  

Hoang Thi Lan1 , Le Anh Minh 2 

Abstract: The aim of this work is to prove some results of the existence and regularity of 

solutions for some nondensely integrodifferential equations with nonlocal conditions, 

where the linear part has an integrated resolvent operator in the sens given by Oka [7]. 

They extend the results of  [4] and [5]. 

Keywords: Integrated resolvent operator, resolvent operator, integral solution, nonlocal, 

nondensely,  integrodifferential equations. 

1. Introduction  

         Nonlocal conditions in dynamical systems play an important role in many physical 

problems. They have better effects in applications than the classical initial conditions 

0(0)u u= . See, for example, in [1,2] to determine the unknown physical parameter in some 

inverse heat condition problems and in [3]  to describe the diffusion phenomenon of a small 

amount of gas in a transparent tube.  As indicated in [8], we sometimes need to deal with 

non-densely defined operators. For example, when we look at a one-dimensional heat 

equation with Dirichlet conditions on [0, ]p and consider 
2

2
A

x

µ
=
µ

 in ([0, ], )C p , in 

order to measure the solutions in the sup-norm, then the domain. 

{ }2( ) ([0, ], ) : (0) ( ) 0D A u C u up p= Í = = 

is not dense in ([0, ], )C p  with the sup-norm since  

{ }( ) ([0, ], ) : (0) ( ) 0 ([0, ], ).A u C u u Cp p p= Í = = ¸  

In this work, we are concerned with the existence and regularity of solutions for the 

following nondensely nonlocal integrodifferential equation 

 

(1.1) 

where  is a nondensely defined closed linear operator on a 

Banach space   is a family of closed linear operators on  having the same 

domain  which is independent of ,  and 

are given functions to be specified later, where  denotes 

the space of continuous function form  to  
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